Non-destructive characterization of structural hierarchy within aligned carbon nanotube assemblies.

نویسندگان

  • Eric Verploegen
  • A John Hart
  • Michael De Volder
  • Sameh Tawfick
  • Khek-Khiang Chia
  • Robert E Cohen
چکیده

Understanding and controlling the hierarchical self-assembly of carbon nanotubes (CNTs) is vital for designing materials such as transparent conductors, chemical sensors, high-performance composites, and microelectronic interconnects. In particular, many applications require high-density CNT assemblies that cannot currently be made directly by low-density CNT growth, and therefore require post-processing by methods such as elastocapillary densification. We characterize the hierarchical structure of pristine and densified vertically aligned multi-wall CNT forests, by combining small-angle and ultra-small-angle x-ray scattering (USAXS) techniques. This enables the nondestructive measurement of both the individual CNT diameter and CNT bundle diameter within CNT forests, which are otherwise quantified only by delicate and often destructive microscopy techniques. Our measurements show that multi-wall CNT forests grown by chemical vapor deposition consist of isolated and bundled CNTs, with an average bundle diameter of 16 nm. After capillary densification of the CNT forest, USAXS reveals bundles with a diameter >4 μm, in addition to the small bundles observed in the as-grown forests. Combining these characterization methods with new CNT processing methods could enable the engineering of macro-scale CNT assemblies that exhibit significantly improved bulk properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anisotropy in the X-ray absorption of vertically aligned single wall carbon nanotubes

Carbon nanotubes are archetypical one dimensional systems, with peculiar anisotropic electronic properties. Only recently μm thick films of vertically aligned SWNT became available. The vertical alignment of the nanotube mats allows the realization of scattering geometries promoting specific dipole transitions parallel and normal to the axis of the SWNT. We find well expressed mosaic spreads fo...

متن کامل

Development and Fabrication of Carbon Nanotube (CNT) based Morphological and Electrical Characterization

This paper presents the development and fabrication of carbon nanotube (CNT) based sensor devices through morphological and electrical characterization. The silicon oxide (SiO2) as insulator is formed by dry oxidation process and Aurum (Au) layer is deposited using thermal evaporator. Then, the electrodes pattern is transferred by photolithography process. The single-walled carbon nanotubes (SW...

متن کامل

Characterization of Carbon Nanotube (CNT) in Adsorption Gas: Monte Carlo and Langevin Dynamic Simulation

Nanostructures have considerably higher surface areas than their bulk counterparts; thereforesurfaces often play important, sometimes even dominant, roles in the nanostructure properties. Thenanocrystalline and nanotubes have low band gaps and high carrier mobility, thus offeringappealing potential as absorption gas. Interaction between methanol molecules and carbonnanotube is investigated usin...

متن کامل

Optical characterization of vertically aligned single-walled carbon nanotube arrays

Here we discuss spectroscopic investigation and characterization of vertically aligned single-walled carbon nanotube (VA-SWNT) arrays, which were synthesized using the alcohol catalytic CVD method [1]. Growth of the VA-SWNTs was monitored using an in situ absorbance measurement [2], which provides information about the growth process. Primary methods employed were Resonance Raman and UV-Vis-NIR...

متن کامل

Gate structural engineering of MOS-like junctionless Carbon nanotube field effect transistor (MOS-like J-CNTFET)

In this article, a new structure is presented for MOS (Metal Oxide Semiconductor)-like junctionless carbon nanotube field effect transistor (MOS-like J-CNTFET), in which dual material gate with different work-functions are used. In the aforementioned structure, the size of the gates near the source and the drain are 14 and 6 nm, respectively, and the work-functions are equal and 0.5 eV less tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physics

دوره 109 9  شماره 

صفحات  -

تاریخ انتشار 2011